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Abstract. In the static replica symmetric approximation, a q u a t ”  Heisenberg S = I spin- 
glass model with single-ion uniaxial anisotropy and infinite-range random Dzyaloshinskii- 
Moriya (DM) interaction in applied magnetic fields is investigated. The local susceptibility 
and the corresponding order parameters are calculated numerically, and are found to be in 
good agreement with those of thennofield dynamics. The dependences of entropy and specific 
heat on temperature are studied numerically at various magnetic fields. It is shown that the 
entropy is always pasitive and the quantum fluctuation has a very strong effect on the specific 
heat. Especially. the typical CIOSSOV~T behaviour of the specific heat of a spin glass at various 
magnetic Kelds for mixed-anisotropy interactions is found. 

1. Introduction 

In recent years, it has been found that a number of hexagonal metallic spin-glass properties 
are strongly influenced by various types of anisotropies 11-31, These systems can be 
described by a model in which, in addition to the random isotropic Heisenberg exchange 
interaction, a single spin uniaxial anisotropy energy -Z(S,)* is added [4,5], where S, is the 
z component of the spin operator. Theoretically, uniaxial anisotropy brings about several 
new features. The quantum Heisenberg spin-glass model with exchange randomness and 
uniaxial anisotropy has been investigated by many authors [&lo]. 

On the other hand, experiments on a canonical spin glass such as CuMn and AgMn 
in the presence of non-magnetic impurities (for example, Au or Pt) with strong spin- 
orbit coupling to the conduction electrons reveal the existence of an anisotropy, which 
can be explained by the Dzyaloshinskii-Moriya (DM) interaction [I 1,121. This interaction 
describes the scattering of the conduction electrons of the host (Cu) by Mn spins via the 
spin-orbit exchange of the non-magnetic impurity. The influence of the DM interaction has 
been investigated by Monte Carlo simulations for classical spin-glass system [13-15] as 
well as by analytical studies with random DM exchange [1&21]. Especially, it has been 
demonstrated that the specific heat versus temperature curve of CuMn alloys at various 
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magnetic fields exhibits crossover behaviour [22]. In addition, the thermodynamic properties 
of classical spin-glass models have been studied by some authors [22,23J. However, 
these investigations neglect the influence of quantum features of spin operators on the 
thermodynamic properties of spin-glass systems. Therefore, the investigation of various 
anisotropic agencies in quantum spin glasses constitutes a subject of current interest. 

The purpose of this work is to extend the analysis of the Heisenberg S = 1 spin- 
glass model with singleion uniaxial anisotropy and random DM anisotropy interactions 
in [24,25]. Thermodynamic quantities, such as entropy and specific heat, are studied 
numerically at various magnetic fields. Special attention will be paid to the analysis of 
the crossover behaviour of specific heat-temperature curves at various magnetic fields. In 
order to compare with other methods, the temperature dependences of local susceptibilities 
and corresponding order parameters are also investigated numerically. 

As emphasized earlier, a quantum spin glass in comparison with its classical counterpart 
is far from being a trivial one owing to the non-commutativity of the spin operators involved, 
which requires a special method of treatment [6,10,24-32]. Typically, quantum mechanics 
manifests itself via time-dependent self-interaction and order parameters, in contrast to the 
classical spin-glass systems, and the dynamics becomes an inherent feature of the problem, 
which significantly influences the calculation of critical lines and transition points, etc. The 
technique employed here to deal with both randomness and quantum features was introduced 
by some of us 1241 and has been successfully implemented in another quantum spin-glass 
problem [25]. This theory allows one to treat both magnetic and thermodynamic problems. 

Y S Xiong er al 

2. Static imaginary-time replica symmetric formulation 

The model Hamiltonian of the system is given by 

where S = (Sz, S,, S,) is the quantum spin operator associated with the local moment 
S. The first two sums are over all possible distinct pairs (t ,  j )  of sites. The strengths 
of exchange interactions J;I and Dij, the latter corresponding to the DM interaction, are 
quenched and independently distributed with symmetric Gaussian probability distributions 

and 

respectively. I is the strength of the singleion uniaxial anisotropy . As usual, the scaling 
of the variances J I N  and D / N  ensures a sensible thermodynamic limit N -+ +W. The 
external magnetic field h is supposed to be in the direction of the z axis. 

The derivation of the free energy is a straightforward generalization of the work by 
Bray and Moore 1261, In order to average over the random couplings { J j j )  and [Dij). 

we apply the replica method and Matsubara imaginary-time functional-integral technique, 
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which allows us to treat the non-commuting spin operators as C numbers. The present 
calculation follows [24] closely: we therefore quote here only the final saddlepoint free 
energy per spin. One gets 

with 

Pflucp = d26,,&, + (1 - d2)SP,S, d = D f J B = 1 f T (ks = 1) 

where T, denotes the ‘time’-ordering operator, which rearranges the operators in the 
expansion of the exponent in the order of decreasing ‘time’ arguments r .  Functional 
differentiation with respect to R;,(r ,  r’) and QS(r,  5’) yields 

where SE is a Cartesian component of Sa; CY, y = 1,2, . . . , n are replica indices. 
The angular brackets denote an average with respect to the effective Hamiltonian in 
(4). Non-trivial solutions for these functions stand for the dynamic spin self-interaction 
and spin-glass order parameter, respectively. Furthermore, within the static replica 
symmehic approximation, these order parameters and self-interactions can be separated 
into longitudinal &) and transverse (T) components by the decomposition 

After substituting these equations into the free energy (equations (3)  and ( 4 ) )  and applying 
HubbardStratonovich transformation to linearize those quadratic forms in the effective 
Hamiltonian, the free-energy density becomes 
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where I ,  denotes the eigenvalue .of the effective Hamiltonian in equation (4). 
abbreviation 
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The 

is used. 
The stationarity of the functional F[R. Q] in equation (7) with respect to the spin self- 

interactions and spin-glass order parameters gives the following self-consistent equations 
[24]: 

where ho (0 = p, U) denotes an infinitesimal applied magnetic field. Furthermore, since 
the rotational symmetry with respect to the z axis (the direction of the fixed magnetic field) 
remains after the DM interaction has been averaged over, the matrix element of the local 
susceptibility tensor can be obtained readily as 

where a, = a, = a2 and aL = a. 

be specified explicitly as 
For spin number S = 1, the eigenvalue A,, of the exponent function in equation (8) can 

1, = z i p  + 2rcos{i[p + 2(n + 1)nl1 (n = -LO,  1) (17) 
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and 

r = J l f [ ( a i x  + a z ~ i ) ~  + (aiy + aiyi)’ + (a3z + a421 + h/J) ’ ]  + i2/911’z (18) 

9 = cos-’[-q/(2r”l (19) 

4 = ~~[(i/3)[(a,~+a,x,)~+(a,y+a~y~)~-2(a~~+~~~~ +h/~)~1+211/27) i = Z / J .  
(20) 

One of the advantages in the present static approximation is to calculate directly the 
thermodynamic quantities from the free energy in (7). Therefore, we will focus here on 
the entropy and the specific heat. The entropy of the system with fixed volume V can be 
determined by the following thermodynamic formula: 

S v  = - a F [ R ,  Q]/aT (21) 

and the corresponding specific heat is 

cv = T a s v / a T .  (7.2) 

Since the local susceptibility, entropy and specific heat are all functions of order parameters 
R and Q (which depend on temperature), they must be solved self-consistently by using 
equations (lOt(13). 
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Figwe 1. The temperature dependence of the longitudinal (RL and QL: full CUNS) and 
transverse (Rr and QT; broken curves) spin-glass order parameten and spin self-interactions 
for different reduced magnetic fields h = h f J .  The upper curves refer to Rn and the lower ones 
refer to Qo; h = 0.0. 0.15 and 0.3 correspond to longitudinal componenJs from top to bottom 
and to mansverse from bottom to top, respectively, and S = I .  d = 0.3, I = 0.2. 
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Figure 2. The local susceptibilities change with temperature for ihe same conditions as 
in figure 1 .  The longihldinal (full CUNCS) and the Vansvem components (broken curves) 
correspond to the reduced magnetic fields h = 0.0, 0.15 and 0.3 from top to bottom (ut high 
tempemures), respectively. 

3. Numerical analysis 

In order to avoid complications caused by mixing of various longitudinal and transverse 
modes in self-consistent equations, we restrict OUT consideration to weak anisotropies and 
take d = 0.3 and f = 0.2. However, it turns out that in this restricted case a great richness 
of thermodynamic features already occurs. 

Figure 1 shows that spin self-interactions and spin-glass order parameters change with 
temperature [t = 3 T / ( 2 J ) ]  for different magnetic fields for spin number S = 1. Obviously, 
the spin-glass order parameters and corresponding self-interactions tend to coincide as 
temperature decreases. The longitudinal components of spin self-interaction and spin- 
glass order parameter RL, QL increase with magnetic field. Longitudinal spin-glass order 
parameters QL are always non-zero in external magnetic fields. Obviously, the spin self- 
interaction and the spin-glass order parameter for zero magnetic field are split into two 
parts, respectively. Figure 2 gives the longitudinal and transverse susceptibility-temperature 
curves for the same condition as in figure 1. It is found that the longitudinal and transverse 
susceptibilities are mixed strongly due to the two kinds of anisotropies. The result is in 
qualitative agreement with that of the thennofield dynamics by Kopet and Biittner [10,21]. 
In addition, the longitudinal component of local susceptibility increases with magnetic field 
at low temperatures, while it decreases as the magnetic field increases. This behaviour 
describes characteristics of spin-glass systems with single-ion uniaxial anisotropy. 

The entropy-temperature curves are plotted in figure 3. It has been demonstrated that the 
entropy has a weak dependence on the external magnetic fields. It is obvious that the entropy 
is positive at zero temperature. It is argued that, since two anisotropies suppress quantum 
fluctuation at low temperature, the replica symmetric solutions become stable [24]. Figure 4 
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Figure 3. The entropy-temperature curves at reduced external magnetic fields 6 c 0.0, 0.15 
and 0.3 (from bomm to top): the rest of the parameten are the same as in figure 1. 

0.64 

0.48 

0.32 

0.16 

0.00 
0.00 1.00 2. 

t 
Figure 4. The specific heatiemperature curves for the same conditions as in figure 1. The 
curves f" top to bottom are for h = 0.0, 0.15 and 0.3. respectively. 

shows the temperature dependence of specific heat It is found that cusps of specific-heat 
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curves are smoothed by the external magnetic field. Especially, the specific-heat curves for 
different magnetic fields exhibit a typical crossover behaviour, which has been observed by 
Brodale et al [22] in experiments on CuMn alloys. We found that this feature can appear 
even if there exist weak single-ion uniaxial anisotropy and random DM interaction. 

It should be stressed that an exact calculation of the thermodynamic quantities for the 
quantum spin glass, such as specific heat and entropy, requires precise knowledge of the 
time dependence of the spin self-interaction involved. Therefore, this means that calculation 
of the exact thermodynamic quantities will depend on the detailed time dependence of R(s) 
in the present Matsubara approach with replica method. It seems that the complexity of the 
problem prevents an analytically tractable approach. However, as was pointed out earlier 
[24], the static approximations will give a rather good result when the temperature is not 
too low. On the other hand, compared with that of the thermofield dynamics (TFD) [IO, 7.11, 
the present calculations are in basic agreement with theirs. We argue that the reason may 
be that both the static and instantaneous approximations neglect the dependence of spin 
self-interaction on time. 
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